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Abstract

A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear

non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and

variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions

found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory ex-

periments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed

accurately with time-steps that are large with respect to the global Alfv�en time and moderate spatial resolution when the

finite elements have basis functions of polynomial degree (p) two or larger. An error diffusion method controls the

generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis

functions with pP 2, where the number of test functions for the divergence control terms is less than the number of

degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to

perpendicular conductivity ðvk=v?Þ is computed accurately with pP 3 without mesh alignment. A simulation of tearing-

mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear

conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D

magnetic topologies.
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1. Introduction

High temperature magnetized plasmas are characterized by extremely anisotropic properties relative to

the direction of the magnetic field. Perpendicular motions of charged particles are constrained by the
Lorentz force, while relatively unrestrained parallel motions lead to rapid transport along magnetic field

lines. The orientation and distribution of fluid-like motions of the electrically conducting plasma then

determine the degree of restoring force arising from the bending and compression of magnetic flux tubes.

When collective motions are able to avoid these restoring forces while releasing available free energy,

magnetohydrodynamic (MHD) instability results. As an unstable perturbation grows to finite amplitude, it

may induce a nonlinear evolution of the system that includes significant (and sometimes catastrophic)

changes in thermal energy and particle confinement. The behavior is often complex, so that analysis must

rely on simulation, but the large anisotropies relative to the distorted magnetic field present challenging
conditions for numerical methods. For example, numerical truncation errors associated with rapid parallel

thermal conduction produce artificial heat transport that leads to qualitative errors in the simulated energy

confinement when using low-order representations.

The anisotropies also lead to a wide range of time-scales for different physical effects. For typical

conditions in magnetically confined plasmas, parallel thermal conduction is the fastest process in the sys-

tem. Alfv�en-wave propagation occurs on a longer time-scale, followed by sound-wave propagation. Per-

pendicular thermal conduction and particle diffusion occur on longer time-scales, and global magnetic field

diffusion (from non-zero resistivity) is the slowest process. Topology-changing magnetic reconnection oc-
curs on a hybrid time-scale between Alfv�enic propagation and global resistive diffusion, and the associated

subsonic flows are nearly incompressible, so numerical simulation of this behavior must deal with extreme

stiffness resulting from relatively fast wave propagation and parallel thermal conduction. Simulating the

behavior of the system is therefore related to various aspects of the numerical simulation of electromag-

netics, incompressible fluid dynamics, convective heat transfer, and linear ideal MHD.

Numerical resolution of magnetohydrodynamic anisotropy leading to singular behavior in ideal con-

ditions has been achieved in linear computations by using specialized low-order discretization methods.

These methods require solving the displacement vector in the components of a fixed magnetic-flux coor-
dinate system, aligning the numerical mesh with the equilibrium magnetic field, and using different finite

element basis functions in the parallel and perpendicular directions [1,2]. For nonlinear simulation, this

approach is less compelling. Nonlinear evolution often forms regions with distinct magnetic topology, such

as helical islands or regions of magnetic stochasticity embedded in nested flux surfaces. Either occurrence

would present formidable challenges for (1) an adaptive meshing algorithm to preserve alignment with the

complicated magnetic field and (2) an arrangement of particular basis functions to match the adaptive

mesh. Furthermore, a basis function expansion tailored to a particular set of equations may not be suitable

for other physical models. For example, discontinuous finite element representations of velocity field
components cannot be applied to a system with viscous dissipation without resorting to non-conforming or

more complicated mixed approximations. Since closure relations for fluid models remains an active area of

research in plasma theory, a specialized discretization will have limited usefulness for a simulation code that

is intended to have flexibility in the equations that it solves.

An alternative is to use a numerical representation that has a high rate of spatial convergence. While a

number of high-order approximations are possible for simple configurations, the ability to represent a

realistic geometry is important for analyzing laboratory data. High-order finite difference methods there-
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fore have limited applicability, and the nonlinear character of high-order finite volume methods [3] (de-

signed for accuracy with discontinuous solutions) is not suited for conditions where stiff linear behavior and

resolution of narrow dissipation layers is important. The finite element method provides a better approach
for nonlinear fusion MHD, where dissipation terms ensure smoothness with sufficient resolution. The

convergence rate realized by the finite element method is then controlled by the degree (p) of the polynomial

basis functions, relatively independent of geometry and mesh spacing irregularities. In addition, a general

finite element implementation can achieve convergence by increasing p with a fixed mesh [4], which con-

stitutes a spectral method.

Applying the finite element method to time-dependent systems leads to separate variational problems for

each equation in a marching algorithm if the implicit terms are based on self-adjoint differential operators.

Standard analysis can then be used to estimate convergence with respect to mesh spacing when the rep-
resentation satisfies two conditions: first, the space of piecewise polynomials ðShÞ of degree p must be

composed of admissible functions, which in our application means that a functional is finite for all finite-

valued functions in Sh and that Sh only includes functions that satisfy the Dirichlet boundary conditions.

Second, the explicit terms in the marching algorithm, i.e. the ‘‘data’’ for each variational problem, must

remain square-integrable functions throughout the evolution. (Chapter 1 of [5] provides a concise math-

ematical background.) Given these conditions, the analysis tells us that the finite element solution ð�uÞ to a

variational problem is the function in Sh with the least ‘‘strain energy’’ error [5], i.e.

aðu� �u; u� �uÞ6 aðu� �v; u� �vÞ for all �m 2 Sh ; ð1Þ

where u is the best solution among all admissible functions. Then, knowing that the finite element solution

is a better approximation in terms of the strain energy than the interpolate function, which is also in Sh, we
eventually arrive at relations for convergence rates [5],

ju� �uj0 6K0hpþ1jujpþ1 ð2Þ

and

ju� �uj1 6K1hpjujpþ1; ð3Þ

where h characterizes the possibly irregular mesh spacing, jujs is the norm of the sth derivative of u,

and K0 and K1 are independent of h. [The estimates (2) and (3) are for the relevant special case of

second-order partial differential equations.] For a time-advance that solves for different fields sequen-

tially, there is a unique strain energy for each equation, and the set of minimization problems is solved

at each time-step.

While the finite element representation allows high-order accuracy without restricting geometry, it

introduces other challenges. Besides implementation complications, it is well known from incompressible

fluid modeling that continuous finite element representations of vector components cannot reproduce a
divergence constraint exactly. Furthermore, ensuring convergence to a divergence-free space requires

special attention. For plasma modeling, this issue arises with the zero-magnetic-monopole constraint and

with nearly divergence-free velocity distributions associated with many unstable MHD modes. A

straightforward approach for approximating the magnetic divergence constraint is to add the diffusive

term jdiv brr � B to Faraday�s law [6–8]. This leads to a method that is related to divergence cleaning

techniques for finite difference and finite volume methods [9] and to penalty function methods for finite

elements [10].

Here, we report on this application of the finite element method to nonlinear non-ideal MHD, and its
implementation in the NIMROD code (non-ideal magnetohydrodynamics with rotation, open discussion)

[7]. The objective of the NIMROD project (http://nimrodteam.org) is to achieve accurate and flexible

modeling of nonlinear electromagnetic activity in computational domains that are realistic for a variety of

http://nimrodteam.org
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laboratory plasmas. Unlike most previous efforts for nonlinear modeling of high temperature plasmas [11–

14], we have avoided spatial representations that restrict the geometry in the poloidal domain. The present

NIMROD implementation has the parameter p selected at run-time, which is more general than either the
finite element implementation reported in [15] or the earlier NIMROD implementation [7], which used

linear and bilinear elements only. This feature has proven useful for exploring the performance of different

basis functions in actual applications, and our findings confirm that using p > 1 is essential for modeling

anisotropies and for satisfying the magnetic divergence constraint. We have restricted our attention to

periodic configurations with a 2D boundary, so the finite Fourier series representation with pseudospectral

computations of nonlinear terms [16] is applied.

The separation of time-scales in high temperature plasmas is manifest mathematically as stiffness in

the non-ideal MHD model, and this is an equally important consideration for numerical simulation.
The dominant part of the stiffness can be described through the linear properties of the system at any

given time, since propagating shocks do not occur on these slow time-scales. The stiffness makes explicit

methods impractical, but semi-implicit methods [17,18] are well suited for these conditions. The semi-

implicit operator considered here is based on the linear ideal MHD force operator, as recommended in

[13], but the symmetric component of the solution�s Fourier expansion is incorporated into the equi-

librium fields. (Geometrically, we use ‘‘symmetry’’ with respect to the periodic coordinate, e.g. the

toroidal direction for toroidal geometries, which is represented by the finite Fourier series. However,

‘‘symmetry’’ is also used in the mathematical context of symmetric matrices.) In addition, the Laplacian
operator used for stabilizing nonlinear pressures has a dynamic coefficient that depends on the non-

symmetric part of the solution. This approach makes the algorithm suitable for simulations where the

fields evolve significantly from their initial equilibrium configuration, while retaining the accuracy re-

ported in [13]. Furthermore, since each advance in the marching algorithm has a self-adjoint operator

for its implicit terms, and positive eigenvalues can be ensured, the requirements for a variational ap-

proach to spatial discretization are met. In many cases, there is no implicit dependence among Fourier

components, so the resulting algebraic systems have sparse matrices. For equations that have implicit

coupling in all three directions, the Fourier representation leads to an algebraic system that includes
convolutions among Fourier components.

The NIMROD code has been written for parallel computation on distributed-memory computers with

communication routines from the message passing interface (MPI) library (http://www.mpi-forum.org).

Standard mesh decomposition techniques with point-to-point communication work well for the finite

element representation of the poloidal plane, where overlap of basis functions is local. Coupling in the

periodic direction occurs through fast fourier transforms (FFTs) and algebraic operations on a uniform

grid over this coordinate. Here, swapping from Fourier-based decomposition to spatially based decom-

position via collective communication is used to maintain scalability. Computationally, the most de-
manding part of the algorithm is the solution of the linear systems. A recent change in the NIMROD

code is the use of the parallel distributed-memory version of the SuperLU software library (http://acts.

nersc.gov/superlu/) to apply sparse direct-solve methods to the systems that do not have Fourier con-

volutions. For the systems with coupling among Fourier components, NIMROD has a matrix-free

conjugate gradient solve that calls SuperLU routines to invert sparse approximations of the complete

matrices as a preconditioning step.

The organization for the remainder of this article is as follows. Section 2 describes the magnetofluid

equations solved by NIMROD, and Section 3 presents the discretization techniques that have been applied.
In Section 4, we use a resistive linear MHD benchmark to show convergence properties in stiff conditions

and to demonstrate performance with respect to the divergence constraint. We also present NIMROD

results on a quantitative test of anisotropic thermal conduction. A sample nonlinear simulation that brings

together MHD stiffness and anisotropic energy transport is presented in Section 5. In Section 6, we further

discuss the properties of the algorithm that are observed in the test results and make comparisons with ideal

http://www.mpi-forum.org
http://acts.nersc.gov/superlu/
http://acts.nersc.gov/superlu/
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MHD eigenvalue computation and incompressible fluid modeling. Conclusions are given in Section 7. The

Appendix describes our implementation of regularity conditions for simply connected (topologically cy-

lindrical) configurations.
2. Equations

Resistive MHD is the simplest model capable of reproducing global electromagnetic behavior observed

in many laboratory and natural plasmas. For long time-scales, where important nonlinear evolution occurs,

it is often necessary to include diffusion and conduction terms, since transport processes act on similar time-

scales. The non-ideal model considered in this paper is resistive MHD with anisotropic thermal conduction,
kinematic viscous dissipation, particle density diffusion, and the numerical diffusion of magnetic divergence

error. Separating terms that represent a steady solution (denoted by the ‘‘ss’’ subscript), this non-ideal

MHD model is

oB

ot
¼ �r� Eþ jdiv brr � B; ð4aÞ
E ¼ �V� B� Vss � B� V� Bss þ gJ; ð4bÞ
l0J ¼ r� B; ð4cÞ
on
ot

þr � ðnVþ nssVþ nVssÞ ¼ r � Drn; ð4dÞ
ðqþ qssÞ
oV

ot

�
þ V � rVþ Vss � rVþ V � rVss

�
þ qVss � rVss

¼ J� Bþ Jss � Bþ J� Bss �rp þr � mðqþ qssÞrVþr � mqrVss; ð4eÞ
nþ nss
c� 1

oT
ot

�
þ V � rT þ Vss � rT þ V � rTss

�
þ n
c� 1

Vss � rTss

¼ � p
2
r � V� pss

2
r � V� p

2
r � Vss �r � qþ Q; ð4fÞ

where E is the electric field, B is the magnetic induction, V is the particle flow velocity, q is the heat flux

vector, Q is the heat source density, and c is the ratio of specific heats. The units are MKS, except that the

Boltzmann constant has been absorbed into temperature. The particle number density n and mass density q
are related through the mass per ion (mi), and total pressure and temperature follow the ideal gas relation,

p ¼ 2nT , assuming quasineutrality ðne ffi ni ¼ nÞ and rapid thermal equilibration among ions and electrons.

Eqs. (4a)–(4f) represent the modified Faraday�s law, the resistive MHD Ohm�s law, the low-frequency limit

of Ampere�s law, particle conservation, flow velocity evolution, and temperature evolution, respectively.

The particle diffusion term is necessary for simulations over transport time-scales, where physical effects

beyond MHD influence the number density profile. Its implementation is only phenomenological, because

the particle flux should be consistent with the product of the number density and the flow velocity. Finding

a better representation of the particle transport is important, but it is beyond the scope of the present effort.
The steady-state terms make the system of equations suitable for nonlinear computations of deviations

from a time-independent solution of the same physics model. We note that this is conceptually similar to
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linear MHD stability analysis of a solution to the force balance equation ðJ� B ¼ rpÞ, but linear MHD is

often used to analyze equilibria that evolve on transport time-scales. In contrast, computations of nonlinear

perturbations over long time-scales require steady-state fields that are time-independent solutions of the
complete system. For example, the steady-state may have non-zero electric field ð�Vss � Bss þ gJss 6¼ 0Þ,
but it is assumed to be curl-free and is not computed with the terms in Eq. (4b) that influence the evolution

of the perturbed magnetic field through Eq. (4a). Separating steady-state terms in the equations adds

complexity to the coding, but it improves numerical accuracy in simulations where the perturbations are

small relative to the steady part of the fields [14]. There are also practical benefits for analyzing MHD

activity. Fitting equilibrium MHD solutions to data from laboratory measurements is now common ex-

perimental practice. Solving the nonlinear evolution of perturbations about a fitted equilibrium provides a

powerful analysis tool without the need for complete information regarding the sources that sustain the
equilibrium profiles of current, plasma flow, internal energy density, and particle density. Since NIMROD

assumes a domain that is symmetric in the periodic coordinate, only symmetric steady-state fields are

considered. The perturbed fields are fully 3D, however.

Thermal transport in Eq. (4f) can be modeled as local anisotropic diffusion with separate coefficients for

the parallel and perpendicular directions [19]

q ¼ �n½vkb̂b̂þ v?ðI� b̂b̂Þ� � rT ; ð5Þ

where b̂ � B=jBj is the local magnetic direction vector – terms for the separated steady-state fields have been
suppressed for clarity. In high temperature plasmas, vk may be many orders of magnitude larger than v?,
which presents numerically challenging conditions when b̂ is not aligned with the mesh (see Section 4.2).

The source term Q in (4f) represents the sum of ohmic ðgJ2Þ and viscous ðmqrVT : rVÞ heating.
The boundary conditions considered here for Eqs. (4a)–(4f) are Dirichlet conditions for the normal

component of B, for T, and for all components of V along the bounding surface. For the tangential

component of B and for n, fluxes are specified as natural boundary conditions via surface integrals in the

variational form of the equations. Here, the respective flux densities are n̂� E and �Drn.
The model represented by Eqs. (4a)–(4f) can be extended to include two-fluid effects, non-local effects of

rapid particle streaming at arbitrary collisionality [20], neoclassical effects [21], and ion kinetic effects [22]

that are important in the dynamics of many high temperature plasmas. The spatial representation described

herein provides a basis for the numerical development of these advanced models, in addition to its utility

for the non-ideal MHD model.
3. Numerical methods

3.1. Time-advance

The numerical approach we have used for Eqs. (4a)–(4f) combines the solution efficiency of a semi-

implicit time-advance with the geometric flexibility and accuracy of a general finite element method for

spatial representation. We arrive at our numerical system of equations by first applying temporal dis-

cretization to Eqs. (4a)–(4f). The velocity field values are defined at integer time indices, whereas the re-

maining fields are defined at half-integer time indices. This creates a leap-frog scheme, and the semi-implicit

operator is used in the velocity advance to eliminate time-step restrictions associated with oscillatory be-
havior. The stabilizing truncation error in this algorithm is dispersive but not dissipative [23], which is an

important consideration for simulating conditions where the physical dissipation terms are small.

Our semi-implicit operator consists of two parts, as in [13]. The first includes terms that stabilize wave

propagation about the symmetric fields, and the second part stabilizes wave propagation when a significant
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non-symmetric component of the solution develops. The first part is derived from the method of differential

approximation [24] by considering the ideal portion of the system, which describes oscillatory behavior and

ideal linear MHD instabilities. After removing the dissipative and heating terms, the temperature and
continuity equations are equivalent to the adiabatic pressure relation

op
ot

¼ �V � rp � cpr � V:

Thus, the differential approximation technique is applied to the ideal equations for pressure, magnetic field,

and flow velocity.
Applying the approach of [24] for generic wave equations, the differential approximation of an implicit

numerical time-advance for the linear ideal MHD equations is

q0

oV

ot
� hDt

1

l0

r
��

� oB

ot

�
� B0 þ J0 �

oB

ot
�r op

ot

�
¼ 1

l0

ðr � BÞ � B0 þ J0 � B�rp; ð6aÞ
oB

ot
� hDtr� oV

ot

�
� B0

�
¼ r� ðV� B0Þ; ð6bÞ
op
ot

þ hDt
oV

ot
� rp0

�
þ cp0r � oV

ot

�
¼ �ðV � rp0 þ cp0r � VÞ; ð6cÞ

where h is the centering parameter ð06 h6 1Þ and V0 ffi 0 is assumed so that B0, J0, and p0 satisfy the static

force balance equation, J0 � B0 ¼ rp0. Differentiating Eq. (6a) with respect to time and eliminating B and p

produces the wave equation

q0

o2V

ot2
� h2Dt2L

o2V

ot2

� �
¼ 2hDtL

oV

ot

� �
þ LðVÞ; ð7Þ

where L is the self-adjoint linear ideal MHD force operator

LðVÞ ¼ 1

l0

fr � ½r � ðV� B0Þ�g � B0 þ J0 �r� ðV� B0Þ þ rðV � rp0 þ cp0r � VÞ: ð8Þ

The wave equation (7) can also be expressed as the system

q0

oV

ot
� h2Dt2LðoV=otÞ ¼ 1

l0

ðr � BÞ � B0 þ J0 � B�rp þ 2hDtLðVÞ; ð9aÞ
oB

ot
¼ r� ðV� B0Þ; ð9bÞ
op
ot

¼ �ðV � rp0 þ cp0r � VÞ: ð9cÞ

For oscillatory modes, the eigenvalues of L are negative, so that the �h2Dt2LðoV=otÞ term on the left-hand

side of (9a) effectively adds wavenumber-dependent inertia, while the 2hDtLðVÞ term on the right side

introduces dissipation [24]. For growing modes, the eigenvalues of L are positive, but there is a finite

maximum eigenvalue [25].

As discussed in [24], we may devise a numerical scheme based on the alternative differential approxi-

mation, Eqs. (9a)–(9c). First, we use the freedom to drop the Dt terms on the right side of (9a) before
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discretizing (the equations remain consistent with ideal linear MHD in the limit of small Dt) to avoid

numerical dissipation in stable modes. We then stagger B and p in time from V to obtain a leap-frog scheme

that is numerically stabilized by the �Dt2L operator, which acts on changes in V. The resulting method is
similar to the semi-implicit methods described in [13,17,18], where all fields are predicted and then cor-

rected, resulting in some level of numerical dissipation. Here, the leap-frog aspects are more closely related

to the method described in [23], where a von Neumann stability analysis for homogeneous equilibria shows

that the magnitude of the numerical amplification factor for the stable modes of L is unity, i.e. free of

numerical dissipation, as long as the h2 coefficient (denoted C0, henceforth) is at least 1/4. For unstable

physical modes, the scheme correctly reproduces growth, but Dt must be less than the inverse of the growth

rate of the fastest mode to avoid a singularity in the time-derivative terms.

Two modifications of this operator are applied to improve its effectiveness for nonlinear simulations.
First, we relax the definition of L to include the symmetric part of the solution, in addition to the steady-

state fields, in B0, J0, and p0, so that the eigenvectors of the operator always correspond closely to the linear

modes of the system, which is important for accuracy [23]. Though the combined fields may not be in static

force balance, in practice they usually represent a state that is near equilibrium, and the operator can be

symmetrized explicitly in its weak form. The second modification, which accounts for the second part of the

semi-implicit operator, is to include the isotropic Laplacian operator with a small coefficient to ensure

stability as geometrically non-symmetric pressures develop in nonlinear simulations. The coefficient is

computed dynamically from the ‘‘nonlinear pressure’’

pnlðR; ZÞ � max
u

B2ðR; Z;uÞ
l0

���� þ cpðR; Z;uÞ � B2
0 ðR; ZÞ
l0

� cp0ðR; ZÞ
����;

which determines the largest variation in the magnetoacoustic wave speed due to asymmetries in u, the
periodic coordinate. This semi-implicit operator is closely related to the one discussed in [13], but the

dynamically updated coefficients adapt to fields that change in time. Updating coefficients with the evo-

lution implies re-computing matrices and their factors, but this is done on an as-needed basis rather than at
every time-step.

In addition to wave propagation, the time-advance algorithm must address the numerical aspects of

advection. For magnetically confined plasmas, we usually encounter flow speeds that are significantly less

than the largest wave speeds, so limiting the time-step to satisfy the Courant–Friedrichs–Lewy condition

[26] is not prohibitive in many cases of interest. Thus, predictor/corrector steps can be combined with the

semi-implicit leap-frog algorithm to stabilize flow without introducing low-order numerical dissipation

associated with wave propagation [27]. The complete marching algorithm is comprised of a sequence of

operations that is described symbolically by
AVðVj; njþ1=2; T jþ1=2;Bjþ1=2;VjÞ 7!Vpre;

AVðVj; njþ1=2; T jþ1=2;Bjþ1=2;VpreÞ 7!Vjþ1;

AnðVjþ1; njþ1=2; njþ1=2Þ 7!npre;

AnðVjþ1; njþ1=2; npreÞ 7!njþ3=2;

AT ðVjþ1; njþ3=2; T jþ1=2;Bjþ1=2; T jþ1=2Þ 7!Tpre;

AT ðVjþ1; njþ3=2; T jþ1=2;Bjþ1=2; TpreÞ 7!T jþ3=2;

ABðVjþ1;Bjþ1=2;Bjþ1=2Þ 7!Bpre;

A ðVjþ1;Bjþ1=2;B Þ 7!Bjþ3=2;
B pre



C.R. Sovinec et al. / Journal of Computational Physics 195 (2004) 355–386 363
where superscripts denote the time-level for each field (tj ¼ jDt for constant-Dt computations and

tjþ1=2 ¼ tj þ Dt=2), and the ‘‘pre’’ subscript denotes a prediction. The last argument of each operation in-

dicates whether advective terms (such as �qV � rV that appears in AV) are computed from the solution at
the previous time-level for a predictor step, or from the predicted field for a corrector step. (Details for each

advance are provided below in Eqs. (12)–(15).) The choice of predictor/correct advection over upwind

methods simplifies the implementation with the finite element representation.

Advancing the semi-implicit leap-frog scheme with predictor/corrector advection requires the solution of

algebraic systems for each advance in the marching algorithm. Besides the semi-implicit operator, which is

part of the AV) operation, the spatial representation described in Section 3.2 leads to mass matrices, and

dissipation terms are computed implicitly. Using implicit dissipation is particularly important for thermal

conduction, where parallel transport is typically the fastest behavior in the system. Wave propagation is
also much faster than nonlinear tearing behavior. Consequently, the matrices for advancing velocity and

temperature are ill-conditioned. These linear systems must be solved with sufficient numerical precision to

accurately reproduce eigenvectors associated with small eigenvalues, because they represent the slow and

physically relevant behavior. In the other equations, the implicit dissipation terms typically have small

coefficients and introduce no computational penalty; the mass matrices already necessitate solution of

algebraic systems.

3.2. Spatial representation

A finite-dimensional spatial representation is achieved through a basis function expansion and a weak

form of the marching equations that is equivalent to a collection of variational problems. The choice of

basis functions and the selection of physical fields to expand are central issues for this approach. Using 2D

Lagrange-type finite elements enables representation of arbitrarily shaped regions of the poloidal plane,

and the basis functions have a sufficient level of continuity for a conforming approximation of the non-ideal

MHD Eqs. (4a)–(4f), (5). For the remaining direction, which is periodic, the finite Fourier series is an

appropriate expansion. We express the collection of variational problems in cylindrical coordinates (R; Z;u)
for toroidal and cylindrical geometries or in Cartesian coordinates (x; y; z) for straight configurations with a

periodic z-coordinate. Nonuniform meshing in the physical poloidal coordinates (R; Z or x; y) is accom-

plished through mappings from element coordinates [5].

Choosing flow velocity, magnetic field, particle number density and temperature as the fields to expand,

our finite-dimensional solution space ðSh;N ;pÞ is the product space composed of all functions v 2 Vh;N ;p,

b 2 Bh;N ;p, n 2 nh;N ;p, and T 2 Th;N ;p that satisfy the essential conditions for the system, i.e. the respective

Dirichlet boundary conditions discussed in Section 2. The subscripts denote the measure of the poloidal

mesh spacing (h), the largest Fourier index (N), and the polynomial degree of the finite element basis
functions (p). These parameters identify a particular space Sh;N ;p from the family of all such spaces.

Members of the Vh;N ;p and Bh;N ;p spaces have the expansion

Ah;N ;pðR; Z;uÞ ¼
X
i;v

aiv;n¼0�aivn¼0 þ
X
i;v;n

ðaivn�aivn þ a�
ivn
�a�

ivn
Þ; ð10aÞ

while members of nh;N ;p and Th;N ;p have the expansion

Fh;N ;pðR; Z;uÞ ¼
X
i

f i;n¼0ai;n¼0 þ
X
i;n

ðf inain þ f�
in
a�

in
Þ: ð10bÞ

The vector and scalar basis functions in Eqs. (10a), (10b) are

�aivn � êvðuÞwiðn1; n2Þ expðinuÞ ð11aÞ
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and

ain � wiðn1; n2Þ expðinuÞ; ð11bÞ

where wi is a 2D polynomial basis function of degree p in the element coordinates n1 and n2. The Fourier
components have indices n ¼ 0; 1; . . . ;N , and the direction vectors have m ¼ R; Z;u for cylindrical coor-

dinates or m ¼ x; y; z for Cartesian coordinates. Henceforth, a subscripted capital such as Vh;N ;p denotes a

function space of the form (10a) or (10b) that is characterized by h, N, and p, whereas the small-case v

denotes an individual function in Vh;N ;p; an exception is made for temperature functions (T) to avoid

confusion with time.

The inverse of the transformation Rðn1; n2Þ; Zðn1; n2Þ within each finite element is implied in Eqs. (10a),

(10b). For many simulations, we use a topologically polar mesh of quadrilateral elements (for example, see

Fig. 1(a)), where the left side of the logically rectangular mesh is mapped to the (R; Z) coordinates of the
magnetic axis of the steady-state fields. In cases with relatively uniform mesh spacing, we define the

transformation with bicubic splines of R and Z in global mesh coordinates that coincide with the local

element coordinates within each quadrilateral element, except for an offset that is unique to each element.

For bilinear and biquadratic wi (p ¼ 1; 2, respectively), this mapping is superparametric, i.e. the mapping is

of higher order than the representation of the solution fields, and a sufficient condition for convergence is

not met [5]. However, for simulations with smoothly varying mesh spacing, we find better accuracy than

with lower-order mappings for the same mesh. We also expand the steady-state fields with bicubic splines in

these cases. The splines are susceptible to overshoot with strong mesh packing, however, because deriva-
tives with respect to the logical coordinates change abruptly. Where strong mesh packing is applied, we use

isoparametric mappings for R and Z, and the steady-state fields are interpolated with polynomials of the

same degree in the element coordinates.

The physical coordinates in Eqs. (10a), (10b) have been expressed as cylindrical coordinates for toroidal

and cylindrical geometry. Taking R ! x; Z ! y;u ! 2pz=Lz makes the representation suitable for com-

puting in Cartesian coordinates where boundary conditions at z ¼ 0 and z ¼ Lz are periodic. Terms in-

volving derivatives with respect to the periodic coordinate and those resulting from cylindrical curvature

have been implemented to allow computation with either coordinate system. The implementation of
Fig. 1. Finite element meshes illustrating (a) radial packing with piecewise bicubic mapping from a logically rectangular mesh of

quadrilateral elements to a topologically polar arrangement of nodes and (b) combining regions of triangular and quadrilateral ele-

ments, using linear mappings, to align with equilibrium magnetic flux surfaces in a tokamak interior while matching to a realistic

experimental cross-section at the boundary.



C.R. Sovinec et al. / Journal of Computational Physics 195 (2004) 355–386 365
regularity conditions for cylindrical configurations (where the domain includes R ¼ 0) is discussed in

Appendix A.

Using test functions from the same space as the solution fields, fwj; cjþ1=2; qjþ1=2;Hjþ1=2g 2 Sh;N ;p, produces
a Galerkin approximation that is equivalent to a variational problem for each step in our time-advance.

Starting with flow velocity, denoting with Dv either the predictor increment Dvpre or the corrector increment

Dvcor, and suppressing the steady-state fields for simplicity, we find Dv 2 Vh;N ;p that satisfyZ
dx

�
qjþ1=2w� � Dv:þ C0Dt2

1

l0

r
�

� ðw� � B0Þ � r � ðDv� B0Þ þ cp0ðr � w�Þðr � DvÞ
�

� C0Dt2

2
½w� � J0 �r� ðDv� B0Þ þ Dv � J0 �r� ðw� � B0Þ�

þ C0Dt2

2
½ðr � w�ÞDv � rp0 þ ðr � DvÞw� � rp0�

þ C1pnlDt2ðrw�ÞT : ðrDvÞ þ gDtqjþ1=2mðrw�ÞT : ðrDvÞ
�

¼
Z

dxDt
�
� qjþ1=2w� � ð�v � r�vÞ þ 1

l0

w� � ðr � bjþ1=2Þ � bjþ1=2

� w� � rpjþ1=2 � qjþ1=2mðrw�ÞT : ðrvjÞ
�

ð12Þ

for all w 2 Vh;N ;p. The new flow velocity is then vjþ1 ¼ vj þ Dvcor. In (12), pjþ1=2 is treated as a nodal quantity,

i.e. coefficients of njþ1=2 and T jþ1=2 are multiplied and pjþ1=2 is interpolated from the resulting products. In

addition, the predictor/corrector advection uses �v ¼ vj for the predictor step and �v ¼ vj þ fDvpre for the

corrector step with the centering coefficient f. The parameter g is used to control the temporal differencing

of the dissipation terms, and we consider implicit differencing with 0:56 g6 1. For particle number density,

we haveZ
dxfq�Dnþ DgDtðrq�Þ � ðrDnÞg ¼

Z
dxDtfðrq�Þ � �nvjþ1 � Dðrq�Þ � ðrnjþ1=2Þg ð13Þ

for all q 2 nh;N ;p, where �n ¼ njþ1=2 for the predictor step and �n ¼ njþ1=2 þ fDnpre for the corrector step. For
the temperature advance, we haveZ

dx
n

c� 1
H�DT

�
þ gDtðrH�Þ � n½vkb̂b̂þ v?ðI� b̂b̂Þ� � rDT

�

¼
Z

dxDt
�
� n
c� 1

H�vjþ1 � r�T � n�TH�r � vjþ1 � ðrH�Þ � n½vkb̂b̂þ v?ðI� b̂b̂Þ� � rT jþ1=2 þH�Q
�

ð14Þ
for all H 2 Th;N ;p. Finally, for the magnetic advance, we haveZ

dx c� � Db
�

þ gDt
g
l0

ðr � c�Þ � ðr � DbÞ þ gDtjdiv bðr � c�Þðr � DbÞ
�

¼
Z

dxDt ðr
�

� c�Þ � ðvjþ1 � �bÞ � g
l0

ðr � c�Þ � r � bjþ1=2 � jdiv bðr � c�Þðr � bjþ1=2Þ
�

� Dt
Z

ds� E � c� ð15Þ

for all c 2 Bh;N ;p, where the surface term represents the influence of an applied electric field.
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The semi-implicit operator occupies most of the left-hand side of Eq. (12), and it includes the Laplacian

part for stabilizing wave propagation in geometrically non-symmetric states arising from nonlinear dy-

namics. For conditions of interest, pnl � B2
0=l0 þ cp0, and accuracy is not sensitive to the value of C1 if it is

large enough ðC1 P 1=4Þ for numerical stability. The terms with coefficient C0Dt2=2 result from the ideal

MHD operator L defined in Eq. (8), but they are symmetrized explicitly for conditions where the 0-sub-

script fields are not in equilibrium, as discussed above. Symmetrizing ensures that the semi-implicit operator

has real eigenvalues, since the finite element method then produces a Hermitian matrix by construction. If

Dt does not exceed the inverse of the growth rate of the most unstable mode of the ideal MHD system, the

resulting matrix is also positive-definite. This condition can always be satisfied in initial value computa-

tions, and it certainly will be in a temporally converged calculation.

The forces on the right-hand side of Eq. (12) are computed from separate nodal fields for B and p, unlike
the stabilizing corrections to these forces that appear through the semi-implicit operator. To our knowl-

edge, the disparate representation of implicit and explicit terms does not have negative consequences;

though, it does influence convergence properties (see Section 6). Early versions of the NIMROD algorithm

were based on von Neumann analysis of the differencing equivalent to using bilinear finite elements [7,28].

We found that the numerical dispersion relation for waves in an infinite uniform equilibrium has the shear

and compressional branches decoupled to all orders in h and Dt when velocity and magnetic field are

discretized; this could not be achieved for formulations based on currents and potentials. Thus, the impact

of the inconsistent representation of implicit and explicit terms is strongly dependent on how the system is
formulated. (In contrast, second-order operators in finite difference and finite volume methods are usually

constructed from first-order operators, avoiding inconsistency. However, preserving the symmetry of

complicated operators like L in general geometry is difficult.)

Nonlinear terms and coefficients that depend on u require products of Fourier series expansions. We

apply a pseudospectral method [16], using the FFT to find data on a uniform grid over the periodic

coordinate; however, the Fourier representation is padded with zero coefficients at high wavenumbers

to prevent aliasing from quadratic nonlinearities [29]. Algebraic operations are performed on the pe-

riodic grid to construct the needed terms, followed by a transform of the result to obtain its Fourier
decomposition. To allow computations involving spatial derivatives of the expanded fields (like rT ),
the transforms and pseudospectral computations are performed at the quadrature points for numerical

integration. The appearance of u-dependent coefficients in the left sides of the equations, like the mass

density in the flow velocity advance and the magnetic direction vector in the thermal conduction of the

temperature advance, leads to convolution matrices that are dense in the Fourier component index. We

solve these systems with a matrix-free iterative method, in order to use FFTs in a direct computation

of the matrix-vector product, instead of computing convolutions explicitly. For magnetic fusion plas-

mas, the non-symmetric (n > 0) Fourier components of q are small and do not have a significant effect
on the flow velocity evolution Eq. (4e). The option of dropping the associated small terms expedites

computation, since it allows solving N þ 1 independent 2D linear systems for each velocity update

instead of solving one coupled 3D linear system.

The mathematical symmetries that exists in the weak form of the temporal advance and the caveat that

Dt is small enough so that all eigenvalues of the left-hand side of Eq. (12) are positive imply equivalence

between Eqs. (12)–(15) and a set of variational problems. Furthermore, the solution space Sh;N ;p is ad-

missible, because all terms on the left-hand sides of Eqs. (12)–(15) are integrable and the essential condi-

tions are enforced. The representation is therefore a conforming approximation, and we can identify the
left-hand side of each of Eqs. (12)–(15) as the respective strain energy. We then expect spatial convergence

rates that increase with the polynomial degree of the basis function, p, according to Eqs. (2) and (3).

However, the terms on the right-hand sides of Eqs. (12)–(15) are produced during the course of the tem-

poral advance. If a calculation tends to create fields that cannot be resolved smoothly, assumptions used in

deriving the convergence-rate relations are violated, and globally high-order discretization is not effective.
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Adaptive techniques, such as the hp finite-element method [30], may be better suited for these conditions.

For high temperature plasmas, numerical accuracy requires resolution of the smallest spatial features

(tearing layers), so we restrict attention to parameters where all length-scales can be resolved.
The numerical treatment of the magnetic divergence constraint is another central issue for accurate

simulation. Re-expressing Eq. (15) with g¼ 1 asZ
dx c� � bjþ3=2

�
þ Dt

g
l0

ðr � c�Þ � ðr � bjþ3=2Þ þ Dtjdiv bðr � c�Þðr � bjþ3=2Þ
�

¼ Dt
Z

dxðr � c�Þ � ðvjþ1 � �bÞ � Dt
I

ds� E � c� ð16Þ

shows that Dtjdiv b has the role of a Lagrange multiplier for the constraint ðr � bjþ3=2Þ2 ¼ 0 in the variational

problem for bjþ3=2. If it were necessary to use arbitrarily large values of the product Dtjdiv b, our continuous

solution space Bh;N ;p would not approach a meaningful divergence-free representation in the limit of h ! 0,

because the formulation does not satisfy divergence-stability (see [31] and references therein). As described

below in Section 6, the lack of divergence-stability in this case results from imposing too many constraints
through the numerical calculation of ðr � bjþ3=2Þ2 for the finite number of degrees of freedom in the space

[32]. Alternatively, if the value of Dtjdiv b is too small, the constraint is not imposed. In either limit, the

‘‘strain energy’’ represented by the left-hand side of Eq. (16) is a poor norm for choosing the best available

solution. For time-dependent problems like the ones considered here, arbitrarily large values of Dtjdiv b are

not required to control the generation of error per time-step. The convergence studies presented in Section 4

show that acceptable results are achieved routinely for basis function with pP 2.

Regarding practical considerations, the poloidal mesh is divided into structured blocks of quadrilateral

elements and unstructured blocks of triangular elements (see Fig. 1(b)). This organization facilitates do-
main decomposition for parallel computation and adds geometric flexibility. At this time, the implemen-

tation of triangular elements in NIMROD is incomplete (the wi in triangular elements are restricted to

linear basis functions), so the results described below consider computations with quadrilateral elements

only.
4. Benchmarks and convergence rates

The performance of a numerical algorithm for magnetic fusion applications should be examined in

conditions that are sufficiently stiff and anisotropic to represent laboratory plasmas. Since stiffness asso-

ciated with the rapid propagation of MHD waves arises primarily from linear terms, the linear resistive

tearing mode described below is an important benchmark for large-Dt performance. The highly localized

nature of the eigenfunction also exercises the treatment of magnetic field divergence error and non-uniform

meshing. The second test problem, presented in Section 4.2, provides a quantitative benchmark of aniso-

tropic thermal conduction.
4.1. Linear tearing mode

The domain for our resistive MHD benchmark is a straight cylinder with periodic ends. For a selected

helical perturbation ð	 eimhþi2pnz=Lz , where m and n are fixed integers, and Lz is the cylinder length), there

exists a concentric cylindrical surface within the domain where the perturbation has constant phase along

the equilibrium magnetic field lines, which lie within the surface. The linear MHD response to the

perturbation is a resonance (due to anisotropy) such that flows will be local to this surface. However,
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resistivity, inertia, and viscosity prevent singular behavior by smoothing spatial scales that are small relative

to global length-scales. We have chosen cylindrical geometry for the test to allow comparison of numerical

results with an analytic dispersion relation that is valid in the limit of vanishing resistivity. For comparison,
we determine the analytic eigenvalue, the matching parameter D0 resulting from singular perturbation

[33,34], by integrating the Euler–Lagrange equations for the helical perturbation [35] in the regions outside

the tearing layer. In the pressureless limit, the growth rate for asymptotically small resistivity is then

computed from the dispersion relation [34]

c ¼ 2Cð5=4Þ
pCð3=4ÞD

0
� �4=5 m2

R2q4
dq
dr

� �2
" #1=5

Bzffiffiffiffiffiffiffiffi
l0q

p
� �2=5 g

l0

� �3=5

; ð17Þ

where q is the ‘‘safety factor’’ or magnetic winding number (2prBz=LzBh in a periodic cylinder) using

equilibrium values at the resonant surface radius (rs, where qðrsÞ ¼ �m=n). The equilibrium we consider is

the pressureless paramagnetic pinch [36] with normalized on-axis current density (l0aJ=B , where a is the
cylinder radius) set to 3. The q profile varies from 1.2 on axis to 0.19 at r ¼ a for an aspect ratio

Lz=2pa ¼ 5=9, and resonance for the m ¼ 1, n ¼ �1 perturbation occurs at r ¼ 0:3859a (see Fig. 2). Solving
the Euler–Lagrange equations for this equilibrium and resonant surface yields D0 ¼ 6:679. This value is

verified with Fig. 3 of [37] after changing normalization ([37] has J normalized to unity on axis, and a is

varied).

The NIMROD computations use the finite element mesh to represent the r–h plane of the straight

periodic cylinder with Fourier representation for the axial direction, so the calculations solve for the

Cartesian components of V and B. The meshes are circular–polar with grid lines running along constant h-
values with uniform spacing and along constant r-values with non-uniform spacing to allow packing near

the resonant surface. An example is the 16� 16 mesh of bicubic elements with isoparametric mapping

shown in Fig. 1(a). The radial mesh spacing as a function of radial cell index is based on the local q-value by

defining a discrete cumulative distribution

fi ¼
Xi

j¼1

1þ Ap exp

(
� ½qðrjÞ � qðrsÞ�2

W 2
p ½qð0Þ � qðaÞ�2

)
for i ¼ 1; 2; . . . ;Nn;
q
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Fig. 2. Profiles of equilibrium safety factor or magnetic winding number (q ¼ 2prBz=LzBh for the cylinder with periodic length Lz) (a)

and normalized parallel current density (b) for the tearing-mode benchmark.
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where Ap and Wp are dimensionless parameters that control the magnitude and extent of packing, and rj,
j ¼ 1; 2; . . . ;Nn are cell-center locations of a preliminary uniform mesh. We use the fi-values to define a

continuous piecewise linear function of radius that increases from zero to f1 over the first cell in the uniform
mesh, from f1 to f2 over the second cell, and so on, reaching fNn

at the right side of the mesh. Vertices of the

packed mesh are then identified by the radii where the piecewise linear function has the values kfNn
=Nn for

k ¼ 0; 1; 2; . . . ;Nn. Results for the tearing mode have been computed with Wp ¼ 0:075, 56Ap 6 12, and

meshes ranging from 8� 8 (with bicubic elements) to 256� 256 (with bilinear elements). The resulting mesh

spacing changes too abruptly to avoid overshoot with cubic splines, so the mapping and equilibrium field

data are interpolated with the same basis functions used for the solution space. For numerical integration,

the tests have been completed with nine Gaussian quadrature points per element for bilinear elements, 16

for biquadratic, and 25 for bicubic, which is an additional point per direction relative to what is normally
used.

The calculations are run as initial value problems, but only linear terms are included in the time-advance,

so the behavior is independent of the perturbation amplitude. The initial flow velocity perturbation is

chosen to be smooth and to have non-zero curl to excite the tearing instability, but otherwise, it is arbitrary.

The value of kinematic viscosity is chosen to be sufficiently small as to have no significant effect on the

computed growth; through experimentation this condition is found to be Pm � ml0=g10
�3 for this mode.

We fix the mass density and equilibrium magnetic field to set the Alfv�en speed ðvA � B=
ffiffiffiffiffiffiffiffi
l0q

p Þ to 1 m/s on

axis, and with a ¼ 1 m, the Lundquist number ðS � l0avA=gÞ is numerically equivalent to the inverse of the
electrical diffusivity.

The essential features of the tearing mode are: (1) adherence to the asymptotic analytic scaling S�3=5

evident in Eq. (17) and (2) near-singular behavior of the eigenfunction in the vicinity of the resonant

surface. Fig. 3 displays computed growth rates on a logarithmic scale to show the asymptotic behavior

at large S-values. At the smaller S-values, the tearing layer extends over non-negligible variations in the

equilibrium, and the behavior is more diffusive than what is assumed in the asymptotic analytic cal-

culations of [33,34]. The NIMROD results for S ¼ 105 � 106 have been computed with a 32� 32 mesh

of bicubic elements with Ap ¼ 5. At S ¼ 107, a 48� 48 mesh of bicubic elements with Ap ¼ 8 resolves
the more localized eigenfunction. At S ¼ 108, a larger mesh of biquadratic elements proves more

tractable, and resolution to within 5% of the analytic growth rate is achieved with a 144� 144 mesh

with Ap ¼ 12.
+

+
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Fig. 3. Comparison of a NIMROD-computed growth-rate scaling for the cylindrical tearing mode with the asymptotic analytic

dispersion relation, Eq. (17).
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Flow velocity components of the eigenfunction for S ¼ 106 computed with the 32� 32 mesh of bicubic

elements show the localized response associated with the resonant surface (see Fig. 4). Although the growth

rate is converged with respect to spatial resolution and at Dt ¼ 100sA is accurate to within 2% of the
temporally converged value, there are azimuthal variations in the axial velocity projection evident at the

scale of the mesh (Fig. 4(c)). These variations are reduced when the computation is performed with more

elements in the azimuthal direction or by reducing the value of Dt, so the fully converged solution with

p ¼ 3 is free of the error. However, similar computations with (a) a 48� 48 mesh of biquadratic elements,

(b) a 24� 24 mesh of biquartic elements, and (c) a 20� 20 mesh of biquintic elements – all with roughly the

same amount of data as the 32� 32 bicubic computation – show no azimuthal variations (see Fig. 4(d)),

and at Dt ¼ 100sA, there is only a 0.3% variation among the computed growth rates.

Spatial convergence properties with respect to the mode growth rate at S ¼ 106 for biquadratic and
bicubic elements are shown in Fig. 5. For each calculation, the numbers of elements in the radial and

azimuthal directions are identical, and the mesh-packing parameters Ap and Wp are kept fixed as the number
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Fig. 4. Eigenfunctions for the cylindrical tearing-mode computed with Dt ¼ 100sA. Profiles are plotted in the radial coordinate (
ffiffiffiffi
W

p
) in

(a)–(b), whereW is the normalized poloidal flux function for the equilibrium, and in the azimuthal angle at a fixed radial coordinate just

outside the resonance in (c)–(d). Frames (a)–(c) show the eigenfunction resulting from a 32� 32 mesh of bicubic elements, whereas (d)

shows the result from a 48� 48 mesh of biquadratic elements. Boxes indicate the locations of element-boundary nodes.
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Fig. 5. Convergence of the computed cylindrical tearing-mode growth rate with mesh spacing for biquadratic and bicubic finite el-

ements with S ¼ 106, and Dt ¼ 100sA. The parameter h is the inverse of the number of quadrilateral finite elements in each of the radial

and azimuthal directions.
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of elements is varied. Clearly, convergence to within 1–2% is quite rapid with pP 2 basis functions. In

comparison, the growth rate for a 256� 256 bilinear mesh with Ap ¼ 10 and otherwise similar parameters

(not shown in Fig. 5) is in error by more than 25%. Given that the temporal resolution is sufficient for the

analytical dispersion relation (17) to describe the growth of the numerical solution from time-step to time-
step, we expected to see errors decreasing like hp by the following argument: The spatial distribution of the

computed eigenfunction enters Eq. (17) through the matching parameter D0. Furthermore, the D0-value

computed from the numerical solution can be described as D0
a þ EðhÞ, where the error, E, goes to zero as h is

reduced and the computed D0 approaches its analytical value, D0
a. For small h, the resulting growth rate

cðhÞ 	 ½D0
a þ EðhÞ�4=5 ffi D04=5

a ½1þ ð4=5ÞEðhÞ=D0
a�, so the error in the computed growth rate is proportional to

the error in the computed matching parameter. Noting that D0 ¼ ½ðdbr=drÞrsþ � ðdbr=drÞrs��=ðbrÞrs depends
on derivatives of the eigenfunction on either side of the resonant surface, we expect to observe

cðhÞ � cð0Þ 	 hp, i.e. the rate given by finite element analysis for the convergence of first derivatives, Eq. (3).
The results for biquadratic and bicubic elements show faster convergence in this test. For example, the

biquadratic series of computations for 48, 96, and 192 elements per direction shows cðhÞ � cð0Þ 	 h3:2.
Performance with respect to the magnetic divergence constraint is more easily related to finite element

analysis. In Fig. 6, we plot the 2-norm of the error vs. h on a log–log scale for the biquadratic and bicubic

calculations represented in Fig. 5 and for three bilinear computations. As h is decreased, the convergence

rate for each basis approaches the value of p, consistent with Eq. (3). In all of these cases, Dt ¼ 100 and

jdiv b ¼ 0:1, where the value of jdiv b has been chosen to achieve an acceptable error level for the compu-

tation with the coarsest mesh, the 8� 8 mesh of bicubic elements.
Since the diffusivity jdiv b is numerical, a result is not converged unless it is insensitive to the jdiv b-value.

Therefore, achieving this independence readily as h is reduced is a desirable property for the algorithm. To

determine the sensitivity in the tearing-mode calculations, we have varied jdiv b in computations with dif-

ferent basis functions. The resulting growth rate and magnetic divergence error for a 128� 128 bilinear

mesh, a 48� 48 biquadratic mesh, and a 32� 32 bicubic mesh are plotted in Fig. 7. The broad range of

jdiv b-values producing the same growth rate for the biquadratic and bicubic cases provides confidence that

the error diffusion approach leads to a good strain energy norm for the magnetic advance when pP 2. In
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contrast, the sensitivity of the bilinear result to the jdiv b-value implies proximity between conditions where

the error diffusion term is insufficient to control the error and conditions where the term imposes too many

constraints. However, we note that while the performance of bilinear elements is poor in this test, they have

been used effectively in simulations with larger levels of physical dissipation.

The last set of computations for the tearing-mode problem considers a range of time-step values to

examine temporal convergence properties. The computed growth rates for S ¼ 106 are plotted in Fig. 8 as a

function of c0Dt, where c0 is the converged value, with dissipation terms evaluated as centered and forward

approximations with respect to the time-step (setting the parameter g of Eqs. (12)–(15) to 0.5 and 1, re-
spectively). All of the results shown in Fig. 8 are within 10% of the converged value, but it is possible to
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distinguish different asymptotic behavior for the two approximations. Results with the centered approxi-

mation are well fit by the quadratic ccentered ffi 6:44� 10�4 � 5:11� 10�3ðc0DtÞ
2
, demonstrating second-order

convergence, whereas a linear term is needed to fit the non-monotonic behavior of the forward approxi-

mation, cforward ffi 6:44� 10�4 þ 1:54� 10�4ðc0DtÞ � 4:94� 10�3ðc0DtÞ
2
. The linear term dominates the er-

ror in the forward approximation only for c0Dt6 0:03, and a transition to quadratic behavior occurs where

the computed growth rate is still quite accurate. Thus, the truncation error from the dissipation terms has

only a small effect on the accuracy in this representative calculation, where the physical conditions are
nearly dissipation-free. Temporal convergence is primarily determined by the numerical method used for

the large ideal terms – the leap-frog method stabilized by the semi-implicit operator. Since the semi-implicit

operator enters with a Dt2 coefficient (see Section 3.1), the method retains the second-order accuracy of the

basic leap-frog method. Forward approximation of the dissipation terms is routinely used in nonlinear

NIMROD simulations to provide damping for all wavenumbers that are represented, unlike time-centered

dissipation.

4.2. Anisotropic thermal conduction

Eq. (5) for diffusive heat flux reproduces rapid equilibration along magnetic field lines and relatively slow

energy transport across magnetic flux surfaces when the ratio of thermal conductivities, vk=v?, is large. In
numerical computations with this model, truncation errors in the temperature gradient are multiplied by

the parallel conductivity, and the resulting heat flux errors tend to produce artificial perpendicular trans-

port that can be attributed to the misalignment of B and the computed rT . For our representation,

temperature is expanded in the form of (10b), and continuity at the interfaces between elements is not

enforced for spatial derivatives. Thus, rT is a piecewise continuous vector field that in general has dis-
continuity along the element interfaces. With a continuous and therefore different representation of

magnetic field, such as an expansion in the form of (10a), numerical computations of parallel thermal
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equilibration do not reproduce B � rT ¼ 0 everywhere unless the distribution of B is restricted. (For ex-

ample, the gradient of the expanded temperature field can satisfy B � rT ¼ 0 everywhere if B is uniform.)

The most challenging conditions for numerical computation arise when vk=v? 
 1 and B has a general
distribution with its direction varying across the mesh – conditions that often occur in the simulation of

nonlinear MHD activity in high-temperature plasmas. Here, we devise a test that measures the effect of

artificial heat transport in finite element computations and use it to show that high-order elements can

satisfy B � rT ¼ 0 with sufficient accuracy for realistic vk=v?-ratios.
While it is possible to evaluate the convergence of B � rT in a sequence of numerical computations, the

impact of the truncation error on thermal transport when computing with realistic vk=v?-ratios is the more

pertinent issue for time-dependent MHD simulations with evolving temperature and pressure profiles.

Thus, our test problem has been devised so that the effective perpendicular thermal conductivity, including
conduction from numerical errors, can be easily measured from the resulting temperature distribution. The

domain is the unit square, �0:56 x6 0:5;�0:56 y6 0:5, and homogeneous Dirichlet boundary conditions

are imposed on T along the entire boundary. The source Q ¼ 2p2 cosðpxÞ cosðpyÞ is used in the temperature

evolution equation to drive the lowest eigenmode of the configuration, and a charge current density di-
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rected out of the x–y plane is induced by an electric field that has the same spatial dependence as the heat

source. An extremely large mass density prevents MHD motions, so that diffusive behavior dominates.

Analytically, the resulting magnetic field is everywhere tangent to the contours of constant temperature in
the solution for isotropic ðvk ¼ v?Þ thermal conduction, T ðx; yÞ ¼ v�1

? cosðpxÞ cosðpyÞ, so anisotropic

conditions with vk 
 v? have the same solution. In numerical computations, transport that is artificially

enhanced by truncation errors in the heat flux vector can lead to a maximum temperature that is less than

v�1
? , even when the alignment of B and the computedrT appears acceptable. By setting the v?-coefficient to

unity in the calculations, we arrange the problem so that the computed steady-state value of T�1ð0; 0Þ
provides a direct measure of the resulting effective perpendicular conductivity including truncation error.

As a guide, errors of order 10�2 would normally be considered acceptable for nonlinear simulations. Note

that the magnetic field direction varies within the domain, so computations with a simple rectangular mesh
provide a rigorous test.

To study convergence properties, the conduction problem is run to steady state with vk=v?-ratios of

103, 106, and 109 with a range of mesh sizes and basis function p-values. Numerical integration for the

finite elements is performed with the standard number of Gaussian quadrature points for a given basis

(4 for p ¼ 1, 9 for p ¼ 2, etc.). The resulting error in perpendicular diffusivity, jT�1ð0; 0Þ � 1j, is plotted

in Fig. 9. The accuracy and convergence rate improve substantially with p for this problem, where the

solution is a smooth function of position. Convergence rates approach the values predicted by Eq. (2)

for vk=v?-ratios of 103 and 106. For vk=v? ¼ 109, the obtained convergence rates are slightly less than
the predictions. Nonetheless, we find that elements with pP 3 can meet a sufficient level of accuracy in

these extreme but laboratory-plasma-relevant conditions, whereas bilinear elements struggle at

vk=v? ¼ 103 and are entirely inadequate at vk=v? ¼ 106. A realistic application including 3D magnetic

topology is considered in the following section and confirms the effectiveness of the high-order spatial

representation.
5. Nonlinear tearing evolution

As an example of a nonlinear simulation in stiff conditions with large anisotropy, we consider a resistive

tearing mode in a toroidal MHD equilibrium with non-circular cross-section, tokamak safety-factor profile,

and aspect ratio R=a ¼ 3 (see Fig. 10). A vanishingly small value of plasma-beta ðb � 2l0p=B
2Þ has been

chosen to prevent stabilization of the current-driven mode [38]. In these conditions, the internal energy

evolution serves as a measure of confinement properties, but it does not play a role in the MHD activity.

The mode, while in its linear stage, is then similar to the cylinder mode described in Section 4.1. The

primary distinguishing feature is coupling among poloidal harmonics due to toroidal geometry and the
shaped cross-section. Responses that are resonant at surfaces with different rational q-values are coupled if

they have the same toroidal Fourier index, n. Other parameters for the simulation are: nss ¼ 1020 m�3,

sA ¼ 1 ls, S ¼ 106, Pm ¼ 0:1, v? ¼ 42 m2 s�1 ¼ 100g=l0, and vk ¼ 4:2� 107 m2 s�1. Here, the Alfv�en time is

defined as sA � qð0ÞR ffiffiffiffiffiffiffiffi
l0q

p
=Buvac

, where the denominator is the value of the corresponding vacuum toroidal

magnetic field at the geometric center of the cross-section. The numerical particle diffusivity is set to the

same value as the perpendicular thermal diffusivity, D ¼ v?, and for controlling divergence error,

jdiv b ¼ 100 m2 s�1.

Since the tearing mode is the only MHD instability of the equilibrium, we first run a linear computation
for the n ¼ 1 toroidal Fourier harmonic. The resulting eigenmode, plotted in Fig. 11, shows coupling from

the dominant m ¼ 2 poloidal harmonic to the m ¼ 3 and m ¼ 4 harmonics, and the computed growth rate

is 4:72� 10�4s�1
A . The nonlinear simulation has toroidal resolution 06 n6 2, and the n ¼ 1 eigenmode

from the linear computation is used as the initial condition with its amplitude adjusted to create a small but
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finite-sized magnetic island. Both computations (linear and nonlinear) use a 32� 32 mesh of biquartic

elements (p ¼ 4) with moderate packing at the q¼ 2 and q ¼ 3 surfaces (see Fig. 10(a)). The time-step in the

linear computation is Dt ¼ 2sA, and in the nonlinear simulation its value is allowed to increase by a factor

of two during the simulation. The boundary conditions described in Section 2 imply that the MHD

dynamics reproduce fixed-boundary behavior in this configuration where there is no vacuum region

surrounding the conducting plasma.

In the nonlinear simulation, the growth of the mode is immediately slowed from the exponential time-
dependence that characterizes linear behavior. This is observed from Fig. 12(a) through the non-constant

slope of magnetic perturbation energy evolution plotted on a semi-log scale. The result is consistent with

analytic theory in that the island width (proportional to the fourth root of perturbation energy) is predicted

to have linear-in-time growth starting when the helical island chain extends beyond the resistive tearing

layer [39]. Here, the linear time-dependence of the island width occurs for t < 12 ms, as shown in Fig. 12(b),

and the slope is within 33% of the value given by the analytical relation dw=dt ¼ 1:22D0g=l0 [40], where D
0

has been estimated from the cylindrical dispersion relation, Eq. (17), using a growth rate calculated from

the same toroidal equilibrium but with reduced viscosity. Over a time-scale that is long relative to the
energy transport time-scale, a2=v?, the free energy in the equilibrium current density profile is expended,

and a 3D steady state is achieved. The simulation also shows that the coupling of harmonics illustrated in

Fig. 11(b) leads to a secondary magnetic island chain at the q ¼ 3 surface. Thus, the final state shown in

Fig. 12(c) has two sets of helical magnetic surfaces that are embedded in nested toroidal surfaces.

Changes in the temperature profile due to the presence of a magnetic island can lead to nonlinear

neoclassical effects in tokamaks [41,42], so accurate modeling of island thermodynamics is also important

for tokamak simulation studies. Whether anisotropic heat conduction affects the temperature profile in the

presence of the island depends on the balance of diffusion in the parallel and perpendicular directions [43].
The length-scale for parallel conduction is effectively infinite at the island separatrix, since the magnetic

field-lines reconnect on themselves after a finite number of transits and do not trace a complete helical

surface. However, flattening of the temperature profile occurs within the island when magnetic reconnec-

tion decreases the parallel length-scale enough so that parallel conduction occurs at a rate that is com-
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petitive with perpendicular conduction, i.e. vk=L
2
k ffi v?=L

2
?. Since the parallel length-scale within the island

is inversely proportional to the island width (for island widths that are small in comparison to the length-

scale of the equilibrium magnetic shear), and the perpendicular length-scale is proportional to the island
width, the critical island width required to affect the temperature is expected to follow Wc 	 ðvk=v?Þ

�1=4
[43].

To test whether the NIMROD algorithm reproduces the theoretical dependence, we use the magnetic

field configuration from five different times in the nonlinear simulation and run thermal-conduction-only

computations with gradually increasing vk in each configuration. Recording the vk=v?-ratio required to

produce an inflection of the temperature profile at the resonant surface as a function of island width then

permits comparison. (The alternative of running a series of nonlinear MHD simulations with different

vk=v?-ratios would require far more computation.) The simulation result for the island-width scaling,

w 	 ðvk=v?Þ
�0:24

, is in good agreement with the analytic scaling of [43], and even the numerical coefficients
are comparable, as illustrated in Fig. 13. The discrepancy reflects the fact that the numerically observed w
and Wc are different quantities. The analytic relation has been derived as a scaling argument to distinguish

small- and large-island-width behavior by identifying conditions where the parallel and perpendicular

diffusion times match. It is not a precise relation for the condition recorded from the simulations, which is

the inflection of the T-profile. The analytic relation has also been derived for cylindrical geometry and does

not account for any toroidal effects that influence the island geometry. In fact, the simulation results

provide empirical evidence supporting the application of the analytic scaling to toroidal configurations.
6. Discussion

The test results presented in Sections 4 and 5 demonstrate favorable convergence properties in stiff and

anisotropic conditions when the degree of the polynomial basis functions, p, is 2 or larger. For p ¼ 1, the

poor performance can be anticipated from the occurrence of ‘‘spectral pollution’’ in ideal MHD eigenvalue
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calculations [1,2] and from the divergence-stability consideration in steady incompressible fluid computa-

tions [31,32]. However, while our approach to spatial representation is generally related to the methods

used in these applications, there are unique aspects in both the non-ideal MHD application and the al-
gorithm. Here, we discuss how the unique aspects contribute to the favorable performance in the time-

dependent MHD computations with pP 2.

A numerical approximation of the ideal-MHD linear force operator, L from Eq. (8), appears in our

semi-implicit time-advance algorithm and in computations of ideal MHD eigenvalue problems [1]. How-

ever, it plays a different role in the two applications. Observe that an ideal MHD eigenvalue problem can be

defined by considering C0Dt2 ! k as a free parameter in our velocity advance, Eq. (12), with C1 ¼ m ¼ 0 and

dropping all terms on the right side. The remaining Eqs. (13)–(15), and the solution space for n, T, and B

would not be used, so the numerical spectrum is determined by the approximations of L and the inertial
term that result from the basis functions used for Vh;N ;p. In contrast, the purpose of the L-operator ap-

pearing in our time-advance algorithm is to add selective numerical dispersion to the leap-frog method.

Here, the L-operator does not, in itself, determine the result of linear computation, because the algorithm

has separate computations of n, T, and B, and the solution space is correspondingly larger. As a means to

extend numerical stability beyond the Dt-limitations arising in a purely explicit time-advance, semi-implicit

operators only need to approximate the combined operation of the explicit terms appearing on the right

sides of Eqs. (12)–(15) – see Eq. (20) of [23]. Thus, it is possible to use approximations of L that are un-

acceptable from the ideal MHD eigenvalue standpoint, provided that errors resulting from the spectrum of
the semi-implicit operator diminish rapidly as time-dependent results are converged. Although we have not

analyzed the spectrum of our semi-implicit operator, the results presented in Section 4 show favorable

convergence properties for pP 2.

A more readily apparent distinction from the ideal MHD problem is that the non-ideal MHD system

(4a)–(4f) is higher-order as a system of partial differential equations, due to the dissipative terms. To ensure

that the dissipative terms, like
R
dxgDtqmðrw�Þ : ðrDvÞ in Eq. (12), are square-integrable, hence, to be

admissible in a conforming approximation, the basis functions must be continuous. The alternative is to use

a mixed method [44] with additional equations and finite-dimensional spaces for the spatial derivatives
themselves, but this is achieved at the expense of solving larger linear systems.

While the algorithms for ideal MHD eigenvalue problems and time-dependent non-ideal MHD can

differ in important ways, general properties that lead to effective computation are similar because the

ideal terms also dominate the behavior of stiff time-dependent MHD systems. The most important

properties [1,2,45] that are needed for the ideal part of the algorithm are (1) resolution of B � r in

singular layers and (2) accurate approximation of nearly incompressible flows and the magnetic di-

vergence constraint [9]. Regarding the B � r calculation, we have quantitatively examined its conver-

gence properties with the anisotropic thermal conduction tests of Sections 4.2 and 5. For the ideal
MHD contributions, the context is different (B � rV and B � rB), but the convergence properties of all

spatial derivatives within elements follow the behavior described by Eq. (3). The results presented in

Sections 4.1 and 4.2 provide confidence that continuous basis functions with pP 2 are satisfactory in

this regard and that pP 3 accommodates severe anisotropy. A unique benefit of using generic high-

order basis functions, which are not specialized for different vector components in a magnetic coor-

dinate system, is that convergence properties are not lost in nonlinear computations when the magnetic

direction vector changes significantly.

Regarding the divergence constraint and compressibility, when pP 2, the finite-element part of Eq. (10a)
is closely related to continuous vector-field expansions that are used in 2D viscous incompressible fluid

computation. However, the error diffusion method is not one of the standard methods for enforcing in-

compressibility. To compare the error diffusion method with the standard methods, consider introducing an

auxiliary scalar variable in Eq. (16) for the divergence error and a separate constraint equation. In this

mixed method, the magnetic advance now solves for bjþ3=2 and X that satisfy
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Z
dx c� � bjþ3=2

�
þ Dt

g
l0

ðr � c�Þ � ðr � bjþ3=2Þ � ðr � c�ÞX
�

¼
Z

dxDtðr � c�Þ � ðvjþ1 � �bÞ � Dt
Z

ds� E � c�; ð18aÞ
Z
dx

NX
k

�
þ Nr � bjþ3=2

�
¼ 0; ð18bÞ

for all c 2 Bh;N ;p and for all N 2 Xh;N ;p0 , where Xh;N ;p0 is a finite-dimensional space for the additional scalar X .

There is no differentiation of the auxiliary scalar, so its representation only needs to be piecewise contin-

uous to satisfy the requirements for a conforming approximation. This method can be related to the
projection method of Brackbill and Barnes [9], but solving Eqs. (18a), (18b) simultaneously with a large

value of k prevents the formation of monopoles, whereas projection removes them after the magnetic field is

advanced. Numerical analysis of finite elements for steady incompressible fluid applications proves that it is

possible to find Xh;N ;p0 for continuous representations of bjþ3=2 with p>1 such that the product space of

fBh;N ;p;Xh;N ;p0 g satisfies divergence-stability [31,46]. Convergence to a divergence-free vector field is then

assured even in the limit of k ! 1, which is comparable to taking the limit Dtjdiv b ! 1.

If one were to replace (18b) with the local relation X ¼ �kr � bjþ3=2, substituting X into (18a) recovers

Eq. (16) with Dtjdiv b ! k, but this changes the numerical character of the finite element solution. The space
represented by fðr � bÞjb 2 Bh;N ;pg is not among the Xh;N ;p0 spaces that satisfy divergence-stability in com-

bination with continuous representations of Bh;N ;p, because it imposes too many constraints [32]. If the

approximation is so over-constrained that the matrix resulting from
R
dxkðr � c�Þðr � bjþ3=2Þ is invertible,

the physical terms in (18a) would not affect the solution unless k has a small value. The penalty method

described in [10] uses this form of the constraint relation, but selective reduced numerical integration, i.e.

intentionally inaccurate numerical integration, of the constraint terms ensures that the matrix resulting

from
R
dxkðr � c�Þðr � bjþ3=2Þ is singular. Ref. [47] shows that in some cases, reduced numerical integration

is identical to using a mixed method that satisfies divergence-stability.
In our time-dependent computations without selective reduced integration, poor performance of the

error diffusion technique results from over-constraining the computation when the value of Dtjdiv b is

chosen to be too large for a given continuous representation of magnetic field. The increasing range of

acceptable Dtjdiv b-values with polynomial degree (p), illustrated by the results shown in Fig. 7(a), reflects

better separation of the longitudinal and solenoidal parts of the expanded vector field as the number of

degrees of freedom in each element are increased. This increasing separation implies that the matrix fromR
dxkðr � c�Þðr � bjþ3=2Þ becomes singular as p is increased from unity, so the constraint term does not

dominate the physical terms when Dtjdiv b is finite.
We can also assess the longitudinal/solenoidal separation by counting the dimensionality of the spaces

Bh;0;p and fðr � bÞjb 2 Bh;0;pg as functions of p in a specific example: a 2D rectangular mesh of m Lagrange

elements in each direction has (mpþ 1Þ2) nodes or 2ðmpþ 1Þ2 coefficients for an arbitrary vector field with

two components, which is relevant for the n ¼ 0 part of our computations. With Dirichlet boundary

conditions for the normal component along the entire boundary as essential conditions, the dimension of

Bh;0;p is then 2ðm2p2 � 1Þ. Finding the dimensionality of fðr � bÞjb 2 Bh;0;pg is a little more complicated,

because the subspaces of scalars from obx=ox and from oby=oy intersect but are not identical. With

Cartesian components and the mesh aligned with the axes of the coordinate system, the scalar field formed
by obx=ox consists of discontinuous piecewise polynomials of degree p� 1 in the x-direction and continuous

piecewise polynomials of degree p in the y-direction. In general, this field can be described by a nodal

polynomial expansion with mpðmpþ 1Þ nodes, but the boundary conditions on B constrain path integrals

across the x-dimension,
R xmax

xmin
dxobx=ox, so there are only m2p2 � 1 degrees of freedom. The scalar field of
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oby=oy similarly has m2p2 � 1 degrees of freedom. The two discontinuous scalar fields share all polynomials

that are continuous and of degree p� 1 in both directions and that satisfy the path integral constraints in

both directions. Therefore, the intersection is described by an expansion with m2ðp� 1Þ2 nodes. Adding the
dimensions of the discontinuous spaces and subtracting the dimension of their continuous intersection, we

find fðr � bÞjb 2 Bh;0;pg to have dimension m2p2 þ 2m2p� m2 � 2, which is the number of constraints im-

posed when using members of this space as test functions for the divergence constraint. The ratio of degrees

of freedom in Bh;0;p to the number of constraint equations is then

2m2p2 � 2

m2p2 þ 2m2p� m2 � 2
ffi 2p2

p2 þ 2p� 1
;

where the approximation holds for large m. Although this result has been derived for a special mesh, we

expect that the large-m approximation is general. For p¼ 1, the approximate ratio is unity, making

computational results very sensitive to the value of Dtjdiv b. For p¼ 2 and larger, the ratio exceeds unity,

and for large p, it approaches 2, the optimal ratio in 2D computations [32].

For 3D computations, the constraint can be addressed separately for each Fourier component, because

the divergence operator is linear. Considerations for the n¼ 0 Fourier component are identical to those
given above. For all other Fourier components, the number of additional degrees of freedom due to the

third dimension is equivalent to the number of nodes in the representation of bz, which is ðmpþ 1Þ2 in the

simple mesh used above. The number of test functions, and hence the number of constraints, also increases.

Here, the derivative obz=oz is just an algebraic operation in the Fourier representation, 2pinbz=Lz, so the

space of test functions includes polynomials that are continuous and of degree p in both x and y. All of the

possible continuous functions (of degree p in one direction and p� 1 in the other) resulting from obx=ox
and oby=oy are contained in the larger continuous space associated with 2pinbz=Lz. Thus, the number of

constraints for Fourier indices with n>0 is ðmpþ 1Þ2 plus the number of nodes that allow discontinuity in
expansions for obx=ox and oby=oy, 2ðmpþ 1Þðm� 1Þ. The ratio of degrees of freedom to the number of

constraint equations for n>0 is then

3m2p2 þ 2mp� 1

m2p2 þ 2m2pþ 2m� 1
ffi 3p2

p2 þ 2p
for large m:

Here, again, the ratio exceeds unity for p > 1 and large m, and it approaches the optimal ratio of 3 for 3D

computations in the limit of large p. (Section 4.4 of [32] describes similar conclusions for quadrilateral and

brick elements, but the number of constraints is determined by the accuracy of the numerical integration.

The ratios derived above are based on exact integration and the combined finite element/Fourier repre-

sentation.)

The increasing insensitivity to Dtjdiv b-values as p is increased, as demonstrated by the results in Fig. 7(a),

is consistent with what we have found above regarding the dimensionality of Bh;N ;p and the number of

constraints imposed by the divergence cleaning term. The ratios of degrees of freedom for n¼ 0 and n>0
approach their optimal values as p is increased, so we can expect increasing separation of expanded lon-

gitudinal and solenoidal fields. For computations where the ratios are greater than unity but not optimal,

selecting finite Dtjdiv b-values avoids over-constraining the magnetic advance. We have found that setting

Dtjdiv b=h2 	 Oð1Þ or O(10), i.e. diffusing the error over the element dimension at each time-step, enforces

the constraint sufficiently in most of our applications.

The numerical issues for compressibility of flow are similar to the considerations for the magnetic

constraint. Although the equations we solve are compressible, the anisotropies of the MHD system lead to

very different responses between shearing and compression, and compressive behavior tends to equilibrate
on time-scales that are fast in comparison to resistive tearing behavior [33,34]. The numerical operator L

appearing on the left-hand side of Eq. (12) contains the terms



382 C.R. Sovinec et al. / Journal of Computational Physics 195 (2004) 355–386
C0Dt2
B2
0

l0

ðr � w�
?Þðr � Dv?Þ

�
þ cp0ðr � w�Þðr � DvÞ

�
; ð19Þ

where the first term arises from motion perpendicular to B0. Since the coefficients can be very large in

comparison to others in Eq. (12) – the ratio Dt2ðcp0 þ B2
0=l0Þ=q0 is the square of the distance traveled by the

fastest wave in the MHD system in a time-step – the terms in (19) restrict compressibility, especially for

perpendicular motions. Since Bh;N ;p and Vh;N ;p share the same set of basis functions, the numerical argu-

ments regarding the dimensionality of the space and the number of constraints are also applicable to

compressibility. However, C0 is set by numerical stability requirements for the semi-implicit advance, so the

only freedom in controlling the magnitude of the compressive terms is through the Dt-value for the time-

step. For example, the error displayed in Fig. 4(c) eigenfunction computed for the cylindrical tearing mode
with a 32� 32 mesh of bicubic elements decreases with h, but it also decreases with Dt. With reduced Dt, the
accuracy of the semi-implicit operator is relatively less important, while reducing h leads to better resolution

of the anisotropy.

Regarding computational performance, the sparse direct solver library, SuperLU, has provided a sig-

nificant improvement over iterative methods, which is attributable to the ill-conditioning of the matrices

when Dt is large. As examples of current performance, the 32� 32 bicubic, 24� 24 biquartic, and 20� 20

biquintic linear computations of the cylindrical tearing mode considered in Section 4.1 each take ap-

proximately 2.5 s per time-step on one processor of a 2 GHz Intel Pentium IV-based workstation. When the
mesh is increased to 48� 48 in the bicubic computation, it takes 9.3 s per time-step. Running the nonlinear

computation discussed in Section 5, which has three Fourier components and uses matrix-free iterative

solves for the temperature advance, on the IBM-SP3 at the National Energy Research Supercomputing

Center (http://www.nersc.gov) takes 13.1 s per step on 12 processors, 7.7 s per step on 27 processors, and 5.9

s per step on 48 processors.
7. Conclusions

We have described an algorithm that combines a variational spatial representation with a semi-implicit

time-advance to achieve flexibility and accuracy for application to non-ideal MHD. The marching algo-

rithm is considered a set of variational problems, and the hyperbolic character of the nonlinear PDE system

is brought out in a sequence of complete advances. The temporal and spatial techniques benefit from each

other through their symmetry characteristics. The time-advance stabilizes the propagation of waves at large

time-step by introducing an implicit self-adjoint differential operator, and the finite element approach

ensures that the matrices resulting in the fully discretized system are Hermitian. Conversely, the variational
approach to spatial discretization provides the required accuracy, and the self-adjoint semi-implicit oper-

ator allows us to create a variational form of the velocity-advance equation. A more general Galerkin

approach may be useful for treating either ion or electron flows implicitly.

The benchmark cases presented in Section 4 and the nonlinear simulation presented in Section 5 dem-

onstrate the effectiveness of the algorithm. The resistive tearing calculations show that a modest number of

finite elements with p > 1, sufficient mesh packing, and a large time-step can reproduce the subtle force

balances associated with MHD anisotropy. For example, the computation with a 16� 16 mesh of bicubic

elements and Dt ¼ 100sA, which is nearly 105 times greater than the limit for an explicit computation with
the same spatial representation, finds a growth rate that is within 12% of the converged result for S ¼ 106

and Pm ¼ 10�3. The anisotropic thermal conduction test in simple geometry shows that sufficient accuracy

can be achieved to resolve parallel and perpendicular transport properties in realistic conditions without

aligning the grid to the magnetic field; efforts to align the grid will further increase accuracy. The simulation

discussed in Section 5 demonstrates performance with respect to slowly growing nonlinear MHD activity,

http://www.nersc.gov


C.R. Sovinec et al. / Journal of Computational Physics 195 (2004) 355–386 383
and the comparison between numerical and analytic results on the magnetic island width required for

temperature profile modification confirms that the modeling of anisotropic diffusion in 3D magnetic to-

pologies is accurate.
The geometric flexibility of the algorithm makes it suitable for many applications in magnetic con-

finement fusion. The nonlinear tearing evolution illustrates conditions encountered while using NIMROD

to simulate neoclassical tearing modes and high-beta disruptions in tokamaks [21,48], where accurate

anisotropic diffusion is critical. In combination with a temperature-dependent resistivity, the accurate

modeling of anisotropic diffusion permits us to address nonlinear free-boundary tokamak computations,

where Ohmic heating leads to large electrical conductivity in the region of closed magnetic flux surfaces

only [49]. NIMROD is also being used to simulate nonlinear magnetic relaxation in alternate configura-

tions, such as spheromaks [50–52] and reversed-field pinches [49,53], where separation of time-scales tends
to be less extreme than in tokamak plasmas, but the behavior often includes evolution to MHD turbulence.

Although numerical issues associated with relaxation simulations have not been discussed in this paper, the

flexibility to address many different topics with one code has been a goal since the inception of the

NIMROD project. Additional geometric flexibility will be achieved with further development of triangular

elements. (For simulating experimental configurations without geometric symmetry, the numerical algo-

rithm can be implemented with finite elements in all three directions.)

Further development of the algorithm is proceeding along two general paths. First, we continue to make

numerical refinements for the non-ideal MHD model described here. We expect to improve the existing
predictor/corrector treatment of flow with regard to accuracy and efficiency in extreme (but not shocked)

conditions. In addition, we will investigate selective numerical integration for the compressibility terms in

the semi-implicit operator. The second path of development concerns expanding the algorithm to solve

more realistic models for high temperature plasmas. The NIMROD implementation is designed to have

flexibility in the equations that it solves, and the modularity facilitates efforts to improve numerical

methods for more realistic plasma models. Some development has already been completed in the area of

two-fluid effects [7], and we are presently working to improve accuracy at the large time-steps needed for

nonlinear fusion studies. We are also adding kinetic effects [20–22] that have a strong influence on the
MHD-like behavior of nearly collisionless plasmas.
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Appendix A

Several applications require simply connected, topologically cylindrical domains. For these cases, we use

the finite element representation for the R–Z plane with one side of the mesh lying along the Z-axis. Physical

fields and their partial derivatives must have unique values at the axis, which leads to a set of regularity

conditions for the Fourier components in the limit of R ! 0. The conditions are derived with a 2D Taylor

series expansion of an arbitrary function of Cartesian x and y coordinates with origin at R ¼ 0 in a con-

stant-Z plane. Substituting Rðeiu þ e�iuÞ=2 and Rðeiu � e�iuÞ=2i for the Cartesian x and y, respectively, while
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leaving the expansion coefficients in terms of Cartesian derivatives, determines the appropriate functional

form for each Fourier component in the limit of R ! 0. For scalars we have

lim
R!0

F ðR;uÞ ¼ f0ðR2Þ þ
XN
n¼1

Rn½fnðR2Þ þ f �
n ðR2Þ� ðA:1Þ

for the finite Fourier series, where fn; n ¼ 0; 1; . . . ;N are polynomial functions of their argument. For

vectors, we have

lim
R!0

AR;uðR;uÞ ¼ RaR0;u0
ðR2Þ þ

XN
n¼1

Rjn�1j½aRn ;un
ðR2Þ þ a�Rn ;un

ðR2Þ� ðA:2Þ

where aRn
and aun

are polynomial functions. The limiting behavior of AzðR; ZÞ is the same as for scalars. The
radial and azimuthal expansions must also satisfy

au1
ð0Þ ¼ iaR1

ð0Þ; ðA:3Þ

so that the vector has a unique direction at R ¼ 0.
Since conditions (A.1)–(A.3) apply in the limit of R ! 0, discrete representations in R need only consider

the leading behavior for each Fourier component index. Conditions where the polynomial expansion goes

to zero at R ¼ 0 are applied as essential conditions on the solution space, like Dirichlet boundary condi-

tions. Satisfying condition (A.3) for n¼ 1 vector components is more complicated, since the R and u
components of a vector are computed simultaneously according to the algebraic system resulting from the

weak form of the implicit terms in a given equation. Our approach is to first compute the matrix elements

for the coefficients of the spatial representation (denoted by â) in the usual manner without considering

(A.3). Then for each node located on the Z-axis, we change to sum and difference coefficients,

âþ � âR1
þ iâu1

2
;

â� � âR1
� iâu1

2
;

in the algebraic system. If ðMÞc denotes the two columns of the matrix corresponding to the aR1
and au1

elements in the algebraic vector of unknown coefficients, the variable change modifies these columns to

ðMÞc ) ðMÞc
1 1
�i i

� �
:

The number of rows of the linear system is then reduced by taking a linear combination of the two rows (r)

corresponding to âþ and â�,

ðMÞr ) ð1�iÞðMÞr and ðbÞr ) ð1�iÞðbÞr;

and the regularity condition (A.3) is enforced at the given node by setting an essential condition on the sum

coefficient, âþ ¼ 0. The operations are repeated for each node along the axis, and the resulting matrix

retains the Hermitian property of the original.

For the n¼ 0 component of scalars, the n¼ 0 Z-component of vectors, and the n¼ 1 R- and u-com-

ponents of vectors, the leading behavior of the polynomial expansion in R is that the slope vanishes in the

limit R ! 0. For each equation in the time advance, this behavior is enforced by the respective strain energy

without any modification to the spatial representation or the resulting linear system. For example if the
n¼ 0 Fourier component in the expansion of Bz has a non-zero radial derivative at small R, computations
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of the n¼ 0 part of the local Ju will be non-zero, leading to resistive diffusion or radial forces that generate

flows to reduce the derivative. The weak form used in the finite element approach avoids singular terms at

R ¼ 0 that need special treatment in a finite difference or finite volume scheme, where the conditions are
explicitly applied to the differences [29]. As another example of the finite element implementation, consider

radial derivatives in the n¼ 1 R-component of magnetic field near R ¼ 0. Since the axial n¼ 1 component is

set to 0 on axis, and condition (A.3) is satisfied, the n¼ 1 part of magnetic divergence reduces to obr=or, and
the error diffusion term in the strain energy for the magnetic advance will tend to eliminate any non-zero

derivative. The conditions are realized as natural conditions, even though there is no corresponding surface

integral.
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